历史总是在反复的过程中前进的,新事物的出现也是如此。人工智能项目作为新事物、高科技,发展中也在经历这个过程,失败是在所难免的,但是,从失败中总结经验,吸取教训,进行改正,并且坚定目标走下去,成功将是必然的。
18个月前,Cooper公司为其客户服务代理商推出了智能推荐系统,以便为客户问题提供解决方案。该公司前身为Nationstar公司,是美国最大的非银行抵押贷款提供商,拥有380万客户,因此该项目被视为该公司一个令人关注的节省成本的项目。该公司首席信息官Sridhar Sharma说,该公司花费九个月的时间才发现代理商没有使用它,又花了六个月的时间来弄清楚原因。
缺乏数据
数据问题是人工智能项目达不到预期目标的主要原因。根据麦肯锡公司去年秋天发布的一份调查报告,限制人工智能技术应用的两大挑战与数据有关。
首先,与Cooper公司一样,许多公司很难获得适当标记的数据来训练他们的机器学习算法。如果数据没有正确分类,工作人员必须花费大量时间标记,这可能会延迟项目或导致项目失败。其次是没有准确的项目数据。
普华永道公司合伙人兼全球人工智能领导人Anand Rao表示,“企业通常没有合适的数据,如果无法使用未标注的数据建立模型,就会感到沮丧。这就是企业实施人工智能项目一直失败的地方。”
美国奥杜邦协会正在使用人工智能来帮助保护野生鸟类。例如,该组织在7月份发布了一项关于气候变化如何影响38种草原鸟类的人工智能分析结果。
奥杜邦协会保护科学副总裁Chad Wilsey说,“如果我们不采取任何措施来减缓气候变化的速度,那么42%的草原鸟类可能面临灭绝,但如果我们能够采取行动,那么可以将其比例降低到8%。”
训练数据偏差
另一个人工智能项目因缺乏数据而受阻的例子是弗里茨实验室试图创建一个模型来识别照片中人们的头发。弗里茨实验室帮助移动开发者构建可以直接在手机上运行的人工智能模型,而无需将数据发送回中央服务器进行处理。
该公司首席技术官Jameson Toole说,“我们希望建立一个能够在实时视频中检测头发并实时改变颜色的功能。”
数据集成问题
有时,问题不在于缺少数据,而在于数据太多。普华永道公司零售业务方面的人工智能和数据的常务董事表示,一家全球性大型银行就面临这种情况。
他表示,如果能够回到过去,这家银行就会更早地开始将不同的数据渠道汇集在一起?。他说,“这是我们没有做的事情,这是一个很大的错误。我们收集了数据,其结果是我们没有获得完全的全方位的客户视图。”
数据漂移
人工智能项目面临的另一个问题是企业依赖历史数据而不是活动交易数据来进行训练。埃森哲公司董事总经理安德里Andreas Braun表示,在许多情况下,在转换为实时数据时,对单个静态历史快照进行过培训的系统表现不佳。
未经处理的非结构化数据
根据咨询机构德勤公司最近的一项调查,62%的公司处理非结构化数据仍然依赖电子表格,只有18%的公司在分析工作中利用了产品图片、客户音频文件或社交媒体评论等非结构化数据。
文化挑战
除了数据外,组织问题对人工智能的成功提出了重大挑战。
Sharma说,如果回到过去,他最初会专注于客户在详细解决问题时使用的语言,并让主题专家与人工智能开发人员配合工作。
Sharma说,“必须让客户与我们的技术团队一起合作,这样的场景始终是最重要的,你必须让他们一起共事,并使其成为一份全职工作。”
缺乏数据、训练数据偏差、数据集成问题、数据漂移、未经处理的非结构化数据以及文化方面的原因是导致人工智能项目失败的原因,但是我们要正视这些问题,既然找到了问题所在,那么相对应的解决方案就比较简单了。找准问题,解决问题,人工智能就能继续朝着更加先进的方向发展。
文章来源:《详谈人工智能项目失败的几大原因》,智家网