简体中文
简体中文
English
注册
登录开发者平台
解决方案
行业解决方案
提供从智慧客房、智慧前台到智慧运营等酒店全场景品牌赋能,推进酒店行业数智化变革
一站式智慧照明系统解决方案,赋能企业快速实现人因照明、节能减排的智能化照明升级
综合应用智能化信息,令楼宇具有智慧和生命力,提供投资合理、安全高效、舒适便利的使用空间
快速实现数字化智慧办公空间,有效实现企业增效、降本和节能。
为连锁型品牌商业门店提供完善的管理系统, 提升门店效率
提供从租控授权、租务运营到园区管理等全方位租住解决方案,驱动租住行业智慧转型
融合全屋智能、地产社区等行业场景能力,提供居住空间丰富的产品矩阵和智能体验
IoT 助力校园场景智能化转型, 提升管理效率
全方位赋能开发者实现多场景智慧节能管理解决方案
以 IoT 平台助力中小制造企业, 实现降本、提质、增效
借助丰富硬件生态,一站式构建安全可靠私有化智能平台
为你的业务场景提供全面的 AI 服务及 AI Copilot 开发方案
海量成熟方案,超低研发门槛,极速落地产品智能化
开发者
与志同道合的开发者和专家共同交流
从初创企业到全球领先企业,涂鸦开发者平台协助实现客户成功。
快速获取并体验优秀的开发者案例产品
服务与支持
生态合作
成为涂鸦服务商,接入涂鸦的另一个选择,帮助更多开发者更快实现智能化
智能互联标识
携手开发者生态合作伙伴联合创新,持续创造互联互通商业价值
聚焦产业变革, 推动人工智能产业发展
智联万物,商者无界
信任中心
信任源于透明
我们严格遵守全球信息安全标准
我们严格遵守全球法规要求
您的数据始终由您掌控
诚邀安全业界同仁共同打造和维护物联网健康生态
支持
提供产品智能化开发全链路的常见问答
7×24一对一客服咨询
技术指导、故障修复以及问题解决
关于我们
全球 AI 云平台服务提供商
探索涂鸦的故事
了解涂鸦的全球视野
涂鸦智能-产品解决方案|行业解决方案|全球智能化平台
涂鸦诚聘全球精英
遇到多维度多数据源时智能运维的解决方案
形状
249

图片43图片43

在相对复杂的业务场景下,一个“事件”除包含我们常用的“时间”(何时发生)、“地点”(哪个服务器/组件)、“内容”(包括错误码、状态值等)外,还应当包含地区、机房、服务池、业务线、服务、接口等,这就是多维度数据。

很多时候,数据分析人员可能要使用各种维度、组合各种指标来生成报告、Dashboard、告警规则等,所以是否支持多维度的数据存储和查询分析,是衡量一个系统是否具有灵活性的重要指标。

对多维度数据的处理,很多时候是一个协议/模型设计问题,甚至都不会牵扯具体的分析和处理框架,设计良好的协议和存储模型,能够兼顾简洁性和多维度。

不同的设计理念会对应不同的处理模型,没有优劣之分,只有哪个更合适的区别。

多数据源或者说异构数据源已经很普遍了,毕竟在复杂场景下并不总是只产生一种类型的数据,也不是所有数据都要用统一的方式处理和存储。

在具体的实践中,通常会混合使用多种存储介质和计算模型。

如何从异构的多数据源中获取数据,还要考虑当其中某个数据源失效、服务延迟时,能否不影响整个系统的稳定性。这考量的不仅仅是各种数据格式/API的适配能力,而且在多依赖系统中快速失败和SLA也是要涉及的点。

多数据源还有一个关键问题就是如何做到数据和展现分离。如果展现和数据的契合度太高,那么随便一点变更都会导致前端界面展现部分的更改,带来的工作量可能会非常大,很多烂尾的系统都有这个因素存在的可能性。

DDoS(分布式拒绝服务)攻击,指借助于客户/服务器技术,将多台计算机联合起来作为攻击平台,对一个或多个目标发动攻击。当我们的大脑在短时间内接收到大量的信息,达到了无法及时处理的程度时,实际上就处于“拒绝服务”的状态,尤其是当重大故障发生,各种信息、蜂拥而至的警报同时到达时。

典型的信息过载的场景就是“告警”应用,管理员几乎给所有需要的地方都加上了告警,以为这样即可高枕无忧了。

然而,接触过告警的人都知道,邮件、短信、手机推送、不同声音和颜色提醒等各种来源的信息可以轻松挤满你的空间,很多人一天要收上万条告警短信,手机都无法正常使用,更别谈关注故障了。

怎样从成千上万条信息中发现有用的,过滤掉重复的、抖动性的信息,或者从中找出问题根源,从来都不是一件容易的事情,所以业界流传着“监控容易做,告警很难报”的说法。

还有一个场景就是监控,当指标较少、只有数十张Dashboard时,尚且可以让服务台 24小时关注,但是当指标达到百万、千万,Dashboard达到数万张时(你没看错,是数万张图,得益于Grafana/Graphite的灵活性,Dashboard可以用程序自动产生,无须运维工程师手工配置),就已经无法用人力来解决Dashboard的巡检了。

历史的发展总是螺旋上升的,早期我们监控的指标少,对系统的了解不够全面,于是加大力度提高覆盖度,等实现了全面覆盖,又发现信息太多了,人工无法处理,又要想办法降噪、聚合、抽象,少→多→少这一过程看似简单,其实经过了多次迭代和长时间的演化。

免责声明:凡注明来源的文章均转自其它平台,目的在于传递有价值的AIoT内容资讯,并不代表本站观点及立场。若有侵权或异议,请联系我们处理。
即刻开启您的物联网之旅
即刻开启 您的物联网之旅
遇到问题了么?联系专属客户经理在线解答