科技的发展牵动着我们生活的方方面面,在每一次的技术革新中,我们都获得了科技带来的便利和舒适。而随着技术的发展,物联网的技术也越发地成熟起来。对于企业而言,如何从物联网产生的大数据中挖掘价值,最大限度地发挥这种价值,是需要不断地去摸索和研究。

Gartner在2017年预测,到2020年,将有200亿个联网的物联网设备。而今,物联网技术的应用达到并超过了这个预期。随着技术的进步,很多企业都生产出了体积更小、成本更低、功耗更低的传感器,这将促进在物联网领域进行投资的公司数量持续快速增长。
从数据中快速、轻易地获取洞察力来提取价值总是很困难的,通常就像大海捞针一样。将更多的数据、数据源、数据类型和流数据混合在一起,使用现有的数据处理、存储和分析方法几乎无法获得所需的价值。为了充分利用他们在物联网领域的投资,组织需要在战略中整合一些重要的内容。
展望自动化
由于连接设备的数量巨大以及它们会产生海量的数据,因此,应对大量物联网数据的唯一解决方案是自动化。自动化可帮助组织实时摄取、转换和传递数据和洞察力。它可以确保IT团队能够吸收庞大的数据量,并能够以一种组织可以使用和从中提取价值的方式提供洞察力。
自动化为数据存储团队消除了手工编码数据基础设施项目的数据基础设施项目的重复性和时间密集型方面的负担,从而带来了几个关键的优势:首先,从数据中获取的洞察力可以在更短的时间内以更低的成本进行交付,大大提高了结果的质量和可靠性。其次,还解放了数据存储团队,使他们将精力集中在分析和数据输出这一更具战略性的工作上。然而,仅仅自动处理数据是不够的。实地处理数据的唯一方法是,在设备刚被创建时就以流的方式从现场发送数据,而不是在将来的某个时间点。
此外,自动化在数据处理中也扮演着至关重要的角色。在处理来自现场设备的数据时,流式数据自动化可使数据管理人员即时处理在现场创建的数据,从而缩小了从数据到洞察力之间的时间差。
了解物联网数据源
物联网设备创建和利用了许多不同类型的数据源和格式---公交车刹车上的传感器、飞机上的数千个传感器、一家工厂的视频监控摄像机和机器。其中一些是传统的结构化数据,但产生的半结构化和非结构化数据量也在不断增加,这些数据也需要实时处理。在将这些数据转换为洞察力之前,需要将其进行整理成更易于管理的形式。考虑到数据量和复杂性,尝试手动执行这一复杂任务是不可能完成的。自动化是有效实现这一目标的唯一途径。
物联网对存储的影响
当涉及到支持物联网体系的基础设施时,面对物联网设备产生的数据的大幅增长,人们的反应是购买更多的存储空间。然而,在这种增长呈指数增长的情况下,这是一项代价高昂的短期战略。相反,企业需要考虑如何在存储过程中转换数据,通过这样做,可减少存储过程中的数据。实时分析数据意味着组织可以保存数据精华,而不是保存大量数据,以便将来进行分析。
这不仅节省了存储成本,还加快了未来的报告流程 ,并提高了洞察力的质量和可靠性。这是一个筛选出哪些数据有价值,哪些数据没有价值的问题,也就是说,将原始数据存储一段时间来测试探索性工作负载通常是有价值的。
物联网市场正在增长
用于各种应用的传感器的成本已经非常低廉,并且,物联网正迅速成为主流。到2025年,物联网的市场经济价值有望达到11.1万亿美元。它不再局限于拥有庞大预算的大企业,很多小公司也在寻找基于物联网应用所能提供的信息来改善其业务的方法。
不但是企业,现在的消费者都知道,流量和数据对于一个企业的发展有多重要,企业可以通过分析数据了解顾客的喜好,提前进行准备。所以,在发展物联网的时候,我们看到传感器成本已经有很大幅度的降低,对于企业而言,就可以利用更多的传感器去获取更多的数据。
文章来源:《怎样最大限度地发挥物联网的数据价值?》







